
AD A098 577 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL RET INFO--ETC FIG 17/2

FORMAL MODELI NG OF COMMUNICATION PROT OC OLS.IU)

MAR a8I C A SUNSHINE DAHCIS 72-C-03R&

ll.CAqlFlFD ISI/RR-81-89 NL

IIIIIIIR

S1.5 I zIIII H~ 1.8

MICROCOPY RESOLUTION TEST CHART

NAhONAL RUP[AU Of STANVARD lq61 A

LEVELV rL March 1981 1

Carl A. Sunshine

Formal Modeling of
Communication Protocols

4~
-b

AprovsdfoPilM ze

Dizibutiofl Unlimuited

INFORMATION SCIENCES INS*TITL TI-

4676 Adm~, ilt) Wal/A farina del Rei /Calfe-rwa 0fl2')I

['NWpERSITY OF 501 71-RN CALIFORNIA 11~ .)1'1

- _____ 81 506 034

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS5 PAGE (When Date Entered) __________________

REPORT DOCUMENTATION PAGE BEOECMLEIGFR
ORT NUI~tSER 2.GovTCCSONO.. RECIPIENT'S CATALOG NUMBER

J/J ISI/RR-81-89 - y2
IT, (and I"4tw:l.; 5._3YPE QF REPOAT &PCX= COVERED(7 Formal Modeling of Communication Protocols, () Research k-

6. P~f* n"4 . 8R"O&X-KUM32ER

7. AUTHOR(*) $* ON TACT OR GRANT NLIMBER(s)

1)Carl A./Sunshine DH1-2C0P

.79. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90291 _____________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. "EPONT DATE

Defense Advanced Research Projects Agency // Mardh 1981
1400 Wilson Blvd. JIS. NUMBER OP PAGES

Arlington, VA 22209 30
14- MONITORING AGENCY NAME & ADDRESS(Il different froon Controlling 0Office) IS. SECURITY CLASS. (of this rsport)

------- Unclassified
ISa. DECLASSIFICATION0 DONRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale;

distribution is unlimited..-

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from, Report)

19. KEY WORDS (Continue on reverse stde It necessary and Identify by block nsinmber)

abstract machine, protocol, specification, state exploration, symbolic
execution, temporal logic, verification

20. ABSTRACT (Continue on reverse aide It necessay and identify by block nuiier)

DD 1 1473 EDITION OF I NOV 65 15OBSOLETE UNCLASSIFIED ~6 ~ .

S/N 102-14* 601SECURITY CLASSIPICATION OF THIS PAGE (Wea Date bweed

UNCLASSIFIED
SRCURITY CLASSIFICATION OF THIS PAGE(Wh U Data EnteM4)

Interest in more rigorous definition and analysis of communication protocols
is increasing. This report surveys the current state of the art in protocol
specification and verification. Methods for specification such as abstract

machines, Petri nets, formal languages, abstract data types, and programs are

described and compared. Verification methods including state exploration,

symbolic execution, structural induction, and program proof are discussed.
Work is progressing rapidly in many of these areas, and no clearly superior

method has emerged yet. At least in the area of specification, some of these

methods are ready for use by a wider community of protocol designers and
users

Avaession ~~
NTIS GPIel
DTIC TAB
Unannounlced

JDI St ifi aic:-.

Ju stri ficot I -

Dist :

UNCLASSIFIED

SECURITY CLASSIFICATION OF Th4S PAGIK(Whe De BM

!SIRR-81-89

March 1981

Carl A. Sunshine

- Formal Modeling of
Communication Protocols

INFORMATION SCIENCES INSTITUTE

UNIVRSIY OFSOUHERNCALFORNA f7 T 4676 Admiralty UWay/ Maixa del Rey/Caifororia 90291
UNIVRSIT OF OUTHRN CLIFONIA(213) 822*I1511

This research le supported by fte Defense Advanlced Reatarch Projects Agey under Contract No. DAHC15 72 C ON1. VI... ad onclusionis
containied in this report we the aufthos &nd should not be kiterqwem se represetn the offiia opirton or policy of DARPA, the U.&
Govenmntd, or any perwo or agency connected with them.

This document is approved for public relese wnd ale; distribution Is unlimnited.

(t

CONTENTS

1. INTRODUCTION 1

2. MEANING OF SPECIFICATION AND VERIFICATION 17

3. SPECIFICATION METHODS.. 3
Finite State Automata... 4
Abstract Machine Model .. 5
FormaiLlanguages... 7

*1Sequencing Expressions .. 9
PetriNoes... 10
Buffer Histories... 12
Abstract Data Types ... 13
Programs and Program Assertions.. 15

*4. VERIFICATION ... 16
State Exploration ... 16
Symbolic Execution.. 18
Structural Induction .. 1
Program Verification... 20
Design Rules... 20

5. CONCLUSIONS... 21

REFERENCES.. 23

Iv

FIGURES

Figure 2.1. User view of protocol layer I

Figure 2.2. Internal structure of protocol layer ... 2

Figure 3.1. Finite State Automata for connection establishment 5

Figure 3.2. Protocol service in Special .. 7

Figure 3.3. Alternating bit protocol in formal grammar 8

Figure 3.4. CCITT X.25 as protocol sequence expression 10

Figure 3.5. Alternating bit protocol as a Petri Net ... 11

Figure 3.6. Protocol service in Gypsy ... 12

Figure 3.7. Protocol service in AFFIRM ... 14

Figure 3.8. Alternating bit protocol in state deltas .. 17

1. INTRODUC17ION

As computer networks proliferate, the design of properly functioning communication procedures or
protocols becomes ever more Important. Traditional methods of informal narrative specifications and
ad hoc validation have demonstrated their shortcomings as protocol "bugs" crop up. Problem of
ambiguous and incomplete specifications are particularly severe for the ever-growing number of
protocol standards that must be implemented by a wide community of users with diverse equipment.

This report surveys recent progress in making the protocol design process more rigorous.
Section 2 clarifies the meaning of protocol specification and verification. Section 3 describes various
specification methods, and section 4 presents verification methods.

The work reported here was performed as part of the Internet Concepts Research project
sponsored by the Defense Advanced Research Projects Agency. The overall goals of this project are
to develop a complete set of protocols to support diverse user applications in a multinetwork
environment. One aspect of this work concerns development of more rigorous protocol specification
and analysis methods to ensure the correctness of system designs and implementations. This report
presents a survey of relevant formal methods. Future reports will include more detailed studies of
particular methods.

2. MEANING OF SPECIFICATION AND VERIFICATION

We assume that the communication architecture of a distributed system is structured as a
hierarchy of different protocol layers. Each layer provides a particular set of services to its users
above. From their viewpoint, the layer may be seen as a "black box" or machine which allows a
certain set of interactions with other users (see Fig. 2.1). A user is concerned with the nature of the
service provided, but not with how the protocol manages to provide it.

USER USER

Figure 2.1. User view of protocol layer

2 FORMAL MODELING OF COMMUNJIICATION4 VROTOCO1.S

This description of the input/output behavior of the protocol layer constitutes a service
specification of the protocol. It should be "abstract" in the sense that it describes the types of
commands and their effects, but leaves open the exact format and mechanisms for conveying them
(e.g., procedure calls, system calls, interrupts).

Although the internal structure of a protocol layer is irrelevant to the user, the protocol designer
must be concerned with it. In a network environment with physically separated users, a protocol layer
must be implemented in a distributed fashion, with entities (processes or modules) local to each user
communicating among one another via the services of the lower layer (see Fig. 2.2). These entities
may be considered "black boxes" in their own right, and the rules by which they interact with each
other (and their users) to provide the layer's service constitutes the actual protocol. Hence a protocol
specification must describe the operation of each entity within a layer in response to commands from
its users, messages from the other entities (via the lower layer service), and internally initiated actions
(e.g., timeouts).

USER USER

ENTITY I ENTITY2

LOWER nLAYER

Figure 2.2. Internal structure of protocol layer

A protocol specification is a refinement or distributed "implementation" of its service specification
in the sense that it partly defines how the service is provided (i.e., by a set of cooperating entities).
This "implementation" of the service is what is usually meant by the design Of a Protocol layer. The
protocol specification should define each entity to the degree necessary to ensure compatibility with
the other entities of the layer, but no further. Each entity remains to be implemented in the more
conventional sense of that term, typically by coding in a particular programming language.

MEANING OF SPECIFICATION AND VERIFICATION 3

Verification is essentially a demonstration that an object meets its specifications. From the above
discussion, we see that the service and the protocol are the two major items requiring specification
for a protocol layer. Hence there are two basic verification problems that must be addressed: (1) the
protocol's design must be verified by analyzing the possible interactions of the entities of the layer,
each functioning according to its (abstract) protocol specification and communicating through the
underlying layer's service, to see whether this combined operation satisfies the layer's service
specification; and (2) the implementation of each protocol entity must be verified against its abstract
protocol specification.

The term "protocol verification" is usually intended to mean this first design verification problem.
Because protocols are inherently systems of concurrent independent entities interacting via (possibly
unreliable) exchange of messages, verification of protocol designs takes on a characteristic
communication- oriented flavor. Implementation of each entity, on the other hand, is usually done by
"ordinary" programming techniques, and hence represents a more common (but by no means trivial)
program verification problem that has received less attention from protocol verifiers.

It is only recently that the need for complete service specifications has been realized. Hence much
of the work to date has attempted to verify plausible but rather ad hoc sets of properties. There are
also a set of desirable properties common to most protocols (and other systems) including:

*Freedom from deadlock, or arrival at some desired final state(s);
*Completeness of the protocol in handling all situations that may arise during execution;
*Progress, or the absence of cycles where no "useful " work is done;
*Stability, meaning that the protocol will return to a "normal" mode of operation after an
abnormal condition occurs.

These properties may be viewed as implicit requirements on any protocol, and may be verified in
the ibuence of ant explicit service specification.

3. SPECIFICATION METHODS

Protocol specification methods have traditionally developed from two viewpoints: state machines
and programs. As we shall see, there is really no fundamental difference between these approachf:%i
and a variety of elaborations that span the gap between them have been proposed. But these two
categories still provide a useful starting point for discussion.

Program specifications are motivated by the observation that protocols are merely a particular
class of information processing procedures, and that various programming languages provide a
convenient means for describing such procedures. Because they typically involve multiple
concurrent processes, protocols do present some special challenges, but programming languages
catering to such problems have been developed.

4 FORMAL MODELING OF COMMUNICATION PROTOCOLS

The state machine model is motivated by the observation that protocols may be conveniently
viewed as rules specifying the responses or outputs of a protocol "machine" to each command or
input. The response to an input typically depends on the type of that input arnd on the history of past
inputs, or the state of the machine. The key components of these models are definitions of: (1) a set
of commands or inputs, (2) one or more state variables, (3) a transition function from (command x
state) - state, and (4) an initial state (initial values for all the state variables). Each command to the
system causes the system to enter a new state which is based on the current state and the nature of
the command.

Within these basic guidelines, there are a number of possible variations. State variables may be
defined as value-returning functions. The commands may have parameters. The effects of
commands may be made visible to the outside world (users) by defining some of the state variables to
be visible, or by producing explicit outputs as additional effects of an operation. "Exceptional"
conditions may be specified where a given command has no effect on the state of the system except
to produce an error indication or output to the invoking user. Generally, the commands are
considered atomic operations that are processed sequentially, but concurrent commands are allowed
in some models. In the following sections we shall discuss a number of thet major combinations of
these features that have been proposed.

Finite State Automata

Finite state automata are one of the simplest types of state machine model because they have only
a single state variable (the state) which takes on a relatively small range of values. For application to
protocols, the states typically correspond to different "phases" of operation, ei-g., idle, call setup, data
transfer, interrupt, call clearing.

PSA may be specified formally by giving their input and output sets, state set, initial state, and
transition functions for next state and output. A great deal of work has been done on their formal
properties. One virtue of FSA is that they may be written graphically to facili'tate understanding, with
circles representing states, and arcs representing transitions. Each arc ia labeled with the input
which causes the transition. Outputs produced are also written on the arcs if needed. Figure 3.1
gives an example of an FSA for a very simple connection establishment proto'col.

FSA may also be presented in tabular form with states as rows and inputs as columns (or vice
versa). The resulting matrix has the appropriate next state and output ente-red for each~ cell. Or the
information may be presented linearly by rows (for each state, give the effetcts of each input), or by
columns (for each event, give the results for each state), as proves most convenient.

While "pure" FSA models have been used to define the control features ol some protocols such as
CCITT X.21 [WeZa 78], their limitation of a single state variable quickly becomes apparent when
protocol features such as sequence numbers, message texts, and timers must be included in the
specification. For example, a separate state would be needed for each possible value of a pending

SPECIFICATION METHODS 5

Idle Oe
~Open

Send I NIT

Receive INIT

Send INIT Wait

Receive INIT

Establi shed

Figure 3.1. Finite State Automaton for connection establishment

message and/or sequence number in a pure FSA model. Hence extension of the model to include a

number of different type state variables becomes desirable, as discussed next.

Abstract Machine Model

We shall use the term abstract machine to represent the extension of an FSA obtained by allowing

multiple state variables of various types. The major difference is that the "state" now becomes a

vector of these variables, and the transition functions giving the next state and the output become

correspondingly more complex. If the data types of the state variables are unbounded (e.g., a queue),

the model may not even have a finite number of states.

An abstract machine model for a protocol often has a distinguished state variable (called "the

state") which still serves to identify the major phases of the protocol. In these cases, the same

graphical model as for FSA may be used, with circles representing the major states, and arcs the

transitions between states. Each arc is labeled with the event causing the transition (which typically

includes conditions on the rest of the state vector and any parameters of the event), with outputs

produced, and with any changes to the rest of the state vector. The tabular specification must be

similarly augmented.

Many people have proposed particular forms of such abstract machine models for specifying

protocols [LeMo 73, Boch 78, DaBr 78, SuDa 78, Piat8O, Tenn80, Dick 80, and SDCo 80]. While

differing in details of syntax, the proposals may be considered equivalent in their basic intention.

a -_ ____ ____ ____ ____

6 FORMAL MODELING OF COMMUNICATION PROTOCOLS

A useful elaboration appearing in several methods is the ability to define "submachines" which

give the details of operation within what appears as a single "compound" state of a higher level

machine [SDCo 80]. Entry into the parent level's compound state causes activation of the appropriate

submachine at its initial state, and any inputs not handled at the parent level are passed to the

submachine. Exit from the parent state terminates the submachine no matter which substate it is in.
This corresponds roughly to the subroutine notion in programming, and has been called "hierarchical

dependence" by [Boch 78].

Two formal specification languages have been developed expressly for defining such abstract
machines: Special [RLSi 79] and Ina Jo [Loca 80]. Special is based on the work of Parnas [Parn 72]
where the state is represented by a set of value-returning functions (Vfunctions), and the commands

by a set of state- modifying functions (Ofunctions) which set the values subsequently returned by
some Vfunctions. The Ofunctions may also have a test for exception conditions which cause an error
return instead of their normal effects. In Special, there is no explicit output produced, but some of the
Vfunctions are meant to be "observable" to the users, while others are not visible to the users and

represent purely internal state information.

The state variables in Special may include basic types such as integer, record, sequence, set, and

boolean, and also user-defined types that are defined independently as other abstract machines. The

effects section of Ofunctions may then call on the Ofunctions of the more primitive types. The

Ofunctions may also include delay until constructs which cause an operation to wait until the

specified property of the state is true before it is effected. A service specification for a simple sing!e-

message-at-a-time data transfer protocol is given in Figure 3.2.

In Ina Jo, the state is defined directly as a number of variables of different types, although there is

no facility for using separately de&;ned machines as additional types. The effects of commands are

given in transforms which specify the new values of any changed state variables as a function of their

old values and the parameters of the command. Ina Jo also allows the specification of properties that

must be maintained by the transforms, but further consideration of these is postponed until our

discussion of verification.

A difficulty with abstract machine models stems from their purely passive nature: they define the

effects of operations which are invoked, but do not include any notion of an active agent which may

cause events or invoke operations on its own initiative. For example, the effects of a Retransmit

operation may be defined, but not the fact that the operation is to be invoked whenever a certain time

elapses. This shortcoming may be partially avoided by interpreting some events as "external" or

callable by a user of the machine, and other events as "internal" or called by some sort of daemon

process associated with the protocol machine itself. Understandably, this problem is more serious

when the issue is liveness rather than safety.

SPECIFICATION METHODS 7

MODULE ProtocolService

TYPES
ms9: ...

state: SET (Empty, Full)

FUNCTIONS

VFUN Buf() - msg m

HIDDEN

VFUN State() -. state s

INITIALLY s = Empty

OFUN Send(msg m)

EXCEPTION State = Full

EFFECTS

'Buf = m [' means new value of]

'State = Full

OVFUN Receive() - msg m
EXCEPTION State = Empty

EFFECTS

m = Buf

'State = Empty

END MODULE ProtocolService

Figure 3.2. Protocol service in Special

Formal Languages

Formal languages and the grammars which define them are another variation of state machine type
models. If we view the sequence of inputs and outputs of a protocol machine as sentences of a

formal language, then we can define the formal grammar which would produce all valid sentences.
There is a well-known correspondence between such grammars and various sorts of automata which

will recognize valid sentences of the language.

For certain types of grammar, this correspondence is very apparent. For each state of the state
machine model, we define a nonterminal symbol in the grammar. The inputs and outputs correspond

. . 1

8 FORMAL MODELING OF COMMUNICATION PROTOCOLS

to terminal symbols. For each transition from state S to state T with input i and output o (which may
be null), we add a production to the grammar, S:: = ioT. The initial state of the machine becomes the
starting symbol of the grammar. Figure 3.3 shows an example of this type of specification for the
"Alternating Bit" protocol. Of course it is possible to simplify the resulting grammar by substituting
later productions for the nonterminals in earlier productions, thereby making the omitted states
implicit in the succession of terminal symbols.

SO::= <get new message> CO

CO::= SendO WO

WO::= ReceiveAckl S1 SO::= ReceiveMsgO <give message to user> Al

ReceiveAckO CO Receivesgl AO

Timeout CO ReceivetsgError AO

AO::= SendAckO SO

S::= <get new message> C1

Cl::= Sendi W1 Si::- ReceiveMsgl <give message to user> AO

Wl::= ReceiveAckO SO ReceiveMsgO Al

ReceiveAckl C1 ReceiveMsgError Al

Timeout Cl Al::= SendAckl S1

(a) Sender (b) Receiver

Figure 3.3. Alternating bit protocol in formal grammar

One disadvantage of formal grammar models is apparent from the example. They do not

distinguish between inputs and outputs (although the names of the symbols may be chosen to

informally indicate this). The usual interpretation of grammars as defining either a recognizer for the

language or a producer makes it difficult to view them as both (recognizer of inputs and producer of

outputs) as necessary for protocols.

Formal language models suffer from the same limitations as FSA in representing the text of

messages or the values of sequence numbers. An indexing scheme for defining groups of

productions parameterized by a sequence number has been proposed by Harangozo [Hara 77].

While maintaining a compact notation. this effectively multiplies the number of productions (or

states).

An advantage of grammars is that the same formalism may be used to represent the format of

messages exchanged. Thus there may be an "action grammar" for the allowed sequences of events,

and a "message grammar" for the format of fields in each event [TeLi 78]. The productions of the

latter may be substituted for the terminals of the former, yielding a more detailed description of the

interactions.

SPECIFICATION METHOOS 9

Sequencing Expressions

Sequencing expressions are an attempt to specify the sequence of protocol operations directly.

The basic operators for building up such expressions are repetition, follows, and alternatives. A

simple form are the well-known regular expressions that correspond to FSA (and type 3 formal
grammars). As with grammars, there is no formal distinction between inputs and outputs in the

sequencing expressions (but naming conventions may be used). However, there is no longer any

explicit state that must be invented and specified. Instead, the current location in the expression is an
implicit state.

Schindler has proposed a number of extensions to facilitate protocol specification [Schi 80]. The

overall expression may be broken into several blocks, each block functioning much as a nonterminal
in a grammar. Each term in the expression may have a rejection predicate which causes an otherwise

allowed operation to be deemed invalid if false. These predicates may refer to the parameter values
of the current and previous operations and to the number of operations of a given type previously

executed (successfully).

Each block may also have several exit blocks specified, so that an operation that does not match
within the currently active block may match (and cause entry to) an exit block. These are intended to

specify the handling of "abnormal" events such as a Disconnect during data transfer. Thus, the exit

block construct serves to define an alternative which "distributes over" all the items in the current

block. Operations that do not match the current pointer or any exit blocks are "rejected" or ignored
with no effect on the system.

An example (taken from [Schi 80]) of this type specification for the X.25 Level 3 protocol is given in

Figure 3.4. Note that only part of the data transfer constraints are represented in the sequencing
expression here (DIT block), which must be augmented by an abstract machine type specification for

the data transfer operations (not shown here for brevity). The complete constraints could be

captured in the sequencing expressions, but we have chosen the simpler example for ease of

understanding. Thus the explicit state machine and sequence expression methods can be mixed in
whatever proportion seems clearest.

The original work by Schindler on sequencing expressions focused on the interactions between

protocol entities and omitted user input/output (from/to the level above). Reference [SFAI 80]

describes recent extensions to include user interfaces, with particular emphasis on service

specifications. Bochmann has also proposed a sequence notation for specifying protocol services

[Boch 80].

10 FORMAL MODELING OF COMMUNICATION PROTOCOLS

PSE X.25/1-3 {CSU -~(DIT* - RES)* - CLR);I

CSU :={(s.cr'#T21# -. r.crconf (r.cr.- r.crconf))
(r.cr - s.crconf))

X2 := CLR:

DIT {s.d r.d s.rr r.ri' s.rnr r.rnr sJi rJi s.iconf r.iconf }
RP 'nx(s.i) = nx(r.iconf) + I AND

nx(s.iconf) z nx(r.i) AND

's.d =0> r.rnr - r.irr RPend,
DP : nx(r.i) = nx(s.iconf) + 1 AND

I nx(r.iconf) = nx(s.i) DPend,

X1 RES, X2 := CLR;

RES :={(r.d t'.rr r.rnt' rJi r.iconf r.resconf)$

-~{(r.res - s.r'esconf)

((s.res - {r.d r.r' r.rnr rJi r.iconf)*)#tT22#'

- r.i'escon' r.res)})
X1 : RES, X2 := CLR;

CI.R :{(r.*cl}*

(r.cl - s.clconf)
((s.cl - (r.*c1conf~c1)*)O123# -. r.clconf r.cl) 1

X2 2CIR;

END .MODULE

Notes: s.XX and r.XX mean send and receive message type XX respectively. Message types are from X.25 (e.g.. data, call
request, receiver ready, reset, interrupt). The term nx(XX) means the number of type XX messages accepted so far. Terms
separated by spaces within brackets are alternatives. -~ means followed by. * means arbitrary repetition. For more details on
syntax, see references cited in the text.

Figure 3.4. CCITT X.25 as protocol sequence expression

Petri Nets

Petri nets and the related UCLA graph model [Post 74, RaEs8O] are other graphical formalisms
used to specify protocols. The places in Petri nets correspond to the states of a protocol machine,
but also are used to represent inputs and outputs. Figure 3.5 (from [Merl 79]) shows the Alternating
Bit protocol as a Petri net.

SPECIFICATION METHODS 11

SENDER LINK RECEIVER

I II

I I I

I I
A M I

I I
L12

16 24 25

Figu re 3.5. Alternating bit protocol as a Petri Net

'Pure" Petri nets suffer most of the same limitations as FSA, although they can represent an

unbounded number of tokens (e.g., messages in transit). Hence a variety of extensions to Petri nets,

such as inhibitor arcs, typed tokens, and state variables (or a separate "data graph"), have been
proposed by various authors [Kell 76, GoMa 76, AABe 78, Symo 80, RaEs 80]. Petri nets extended in
this fashion have an expressive power similar to abstract machines. It is somewhat easier to combine
Petri nets into composite systems by identifying the input places of one net with the outputs of

another. Since multiple control tokens are allowed in Petri nets. the result is a single Petri net with

concurrently executing subparts.

Another extension not usually found in abstract machines is the addition of timing constraints to

the transitions. These may be necessary to rule out undesirable behavior in some cases [MeFa 761.

r26 15 amI

-: -- : - -i il a lll I I 2 1

12 FORMAL MODELING OF COMMUNICATION PROTOCOLS

Buffer Histories

Buffer histories are similar to formal languages and sequence expressions in their attempt to define
the input/output behavior of the system without any mention of explicit states. The basic model is a
process or active computing entity that has a set of buffers through which it exchanges items of
specified types with the outside world. Several processes may be connected by these buffers. The
major component of the specifications are relations between the items read from and written to
different buffers by different processes.

The division of the interaction history into separate histories for each buffer is sometimes an
advantage (e.g., in stating that the output bears some relation to the input), and sometimes a
disadvantage because the relative ordering of items in different buffers must be considered (e.g.,
whether a Send request in a message data buffer is preceded by a Connect request in a call control
buffer). In the latter case, some sort of time stamps must also be associated with the items to allow a
relative ordering. Of course both the time stamps and the buffer histories are specification

constructs, and need not appear in any implementation.

The major development of this type of specification has been in the Gypsy system [GoCo 78]. This
system caters to cyclic processes in whikh the buffer relations are specified to hold at blockage

points when a process tries to read from an empty buffer or write to a full one. An example Gypsy
specification for a simple data transfer service is given in Figure 3.6.

BEGIN

TYPE msg

PROCEDURE Protoco1Service

(Sent: INPUT BUFFER[1) OF msg, Delivered: OUTPUT BUFFER[O] OF msg)

BEGIN

BLOCK ALLFROM(Sent) = ALLTO(Delivered)

END

END

Figure 3.6. Protocol service in Gypsy

Other workers have also made use of similar event histories in their specifications, notably Hailpem

[HaOw 801 and Luckham and Karp [LuKa 79]. In these cases, the histories may be of more general

events or actions performed, and need not correspond to items actually placed in buffers.

SPECIFICATION METHODS 13

Although experience with these methods is still rather limited, they appear useful when the

behavior being specified is conveniently expressed as a relationship between sequences of items

(e.g., output equal input). When a more temporally "local" view is needed (e.g., whether the last input
was a Connect request or not), an explicit state notion that summarizes the entire history seems more

convenient [Suns 791.

Abstract Data Types

Abstract data types are an attempt to encapsulate data and the operations that manipulate it in a

fashion similar to the way procedures encapsulate portions of program behavior. Two main

approaches have emerged in this area: abstract model and axiomatic [Gutt 791.

The abstract model approach is essentially a formalization of the notion of abstract machine

discussed above. However, the data types used as components of the state vector may themselves

be (more primitive) user-defined abstract data types. The specifications give the effects of each

operation of the new type on the set of data types that constitute the "model" (state vector) for the

new type. For example, a stack might be defined by using a sequence as the model. The effect of

one operation on a subsequent operation is given indirectly, by changing the state, which in turn

determines the effect of the subsequent operation.

The axiomatic approach attempts to define the operations of a new type directly without recourse

to an underlying model, by defining the effects of the operations on each other. In particular, there

are constructor operations which change or create new objects of the type (e.g., NewStack,
Push(stack,item)), and selector operations that reveal properties of the objects by returning values of

other types (e.g. Empty(stack): boolean, or Size(stack): integer). There may also be modifier

operations (e.g., Pop(stack)) which change objects of the new type, but whose effects may be defined
in terms of the primary constructors.

The effects of operations are given as a set of axioms that define the effects of combinations of

operations directly. The axioms may be interpreted as rewrite rules that show how to reduce any

combination of operations to a simpler form. For example, Top(Push(stack,item)) = =item and
Pop(Push(stack,item)) = = stack would be axioms for a stack.

The distinction between these two approaches may not be so great in practice [FIMi 79]. In

particular, it is possible to write abstract model specifications in the axiomatic notation, as shown in

Figure 3.7, which specifies a simple data transfer service using AFFIRM [Gerh 80, Thorn 81].

Experience with these techniques is still limited, but their ability to formalize the widely used abstract

machine model is very promising. The ability to incorporate other data types in a new type and the

existence of some automated tools for checking specifications have proved very powerful aids.

However, major problems remain in the area of exception handling, concurrency, and composition of

systems from parts.

14 FORMAL MODELING OF COMMUNICATION PROTOCOLS

type Protoco1Service;

needs types Message, QueueOtMessage;

declare p: ProtocolService;
declare mn: Message;

interfaces Sent(p). Recelved(p), Buf(p): QueueOfMessage:

interfaces Init, Send(p,m), Deliver(p): ProtocolService;

interface Empty(p): Boolean;

define Empty(p) =- Buf(p)zNewQueue~fMessage;

axioms

Sent(Init) a= NewQueue~f~essage,
Received(Init) as NewQueueOf~essage,
Buf(Inlt) -r New~ueueOfMessage,

Sent(Send(pm))
if not Empty(p) then Sent(p) Add In
else Sent(p),

Received(Send(pin)) am Received(p),
Buf(Send(p,m)) -
if not Einpty(p) then Buf(p) Add mn
else Buf(p).

Sent(Deliver(p)) -- Sent(p),
Received(Deliver(p)) =-n
if not Einpty(p) then Received(p) Add Front(Buf(p))
else Recelved(p),

Buf(Deliver(p))
if not Einpty(p) then Remove(Buf(p))
else Buf(p);

Figure 3.7. Protocol service in AFFIRM

Exception handling in abstract data type models is still under investigation (GoTa 79]. Because of
the strong typing of each operation, it is awkward to define operations that return an error indication
as well as their normal type value (e.g., what is Top(NewStack)?). It is possible to specify a separate
test operation which tells whether an operation would be successful, but this is also inconvenient.
Hence systems are usually specified to "ignore" invalid requests.

SPECIFICATION METHODS 15

Programs and Program Assertions

Programs are one of the oldest methods of describing the operation of a system. Some of the

earliest protocol analysis work was based on program specifications (Boch 75, Sten 76]. Later work

by Krogdahl generalized these programs to include a broader class of allowed behavior [Krog 78].

Special language constructs tailored to specifying concurrent protocol modules have been another

line of development [VyVi 80]. But the major shortcoming of programs as specifications remains their

lack of abstraction.-it is difficult to separate the necessary behavior of the system from the incidental

aspects of the program chosen to implement it.

Recent work incorporating temporal logic is aimed at specifying the necessary behavior of the

system with minimal or no reference to explicit programs. The basic temporal operators eventually

and henceforth can be added to traditional assertions about programs using predicate calculus.

Combined with the notion that the locus of control is at (just before), in, or after a statement, temporal

logic facilitates specifications of the behavior of systems over time. This makes specification of

progress properties as well as safety properties of the system easier.

Hailpern and Owicki have developed specifications employing data abstraction, event history, and

temporal logic techniques [HaOw 80]. Both active and passive components may be specified,

corresponding to processes and abstract machines. For the passive components (called monitors),

the effects of operations are only partly specified in the usual way for each operation, and other

properties are given in invariants on the variables of the system (for safety) and in commitments using

the temporal operators to specify liveness properties. Only invariants and commitments need be

given for processes.

An example of an invariant might be msg in output implies msg in input as a description of a
medium that can lose but not invent new messages. An example of a commitment might be at

Receive and MessageExists implies eventually after Receive, indicating that a Receive operation will

complete if a message is available.

Schwartz and Melliar-Smith have developed specifications employing temporal logic with a more

explicit notion of system state [ScMe 811. They claim that the use of temporal logic allows a more

general description of the system than a state machine model. For example, incrementing a

sequence number might be associated with several operations of a protocol machine and still allow

correct behavior, but an abstract machine model must pick one. Their specifications allow them to

state the minimum necessary condition that successive packets have different sequence numbers

without having to specify just how this is accomplished. They have also experimented with a number

of more specialized temporal operators such as until and latches while.

State deltas are another method making implicit use of temporal logic [Croc 77]. A state delta

forms the basic unit of specifications, giving a precondition, modification list, and a postcondition.

.1'';*

16 FORMAL MODELING OF COMMUNICATION PROTOCOLS

The state delta says that if the precondition becomes true at some time t1, then eventually (at some

time t2)tl) the postcondition will be true, and between ti and t2 only the variables listed In the

modification list may change.

State deltas were originally developed for sequential (single process) programs, but they are

currently being extended for concurrent programs. Time constraints in basic state deltas, and a Wait

primitive with a timeout have also been added [Over 80]. Translators from some program languages

to state deltas have been written. Figure 3.8 gives a specification for the Alternating Bit protocol
illustrating some of these features (with the mod lists omitted for brevity).

As suggested by the term state delta, the distinction between program and state machine

specifications is not fundamental. If the program counter is viewed as the main state variable, then

programs can be translated into an abstract machine model. In state deltas, the program counter

typically forms part of the precondition, and appears in the postcondition with a new value (the next
state). On the other hand, state machines can clearly be expressed as programs.

4. VERIFICATION

While clear specifications are valuable in their own right, a major motivation for more rigorous

specifications is to enable formal verification as described in Section 2. Some verification techniques

are closely coupled with particular specification methods, while others are more broadly applicable.

In this section we present the major verification techniques, indicate where they have been used, and

discuss their relative merits.

State Exploration

State exploration is a constructive technique for exploring the possible behavior of state machine

systems. The method is based on building the graph of reachable states starting from a specified

initial state. For each state in the graph, arcs to all possible immediate successor states are added. If

the successors are either previously generated states (the graph has cycles) or terminal states (with
no successors), then no further exploration of those nodes is needed. Clearly, the process will

terminate if there are a finite number of states.

State exploration is directly applicable to checking finite state automata (FSA) specifications. It can

identify a number of undesirable properties of a system including deadlocks (undesired terminal

states), cycles (which may or may not be desired), incompleteness (the possibility of an event whose

processing is not specified), and overspecification (portions of the specification that are never used).

In addition to checking single FSA, the method can be used to analyze systems of FSA connected
by message queues. A composite or global system state is constructed including the states of each

FSA and the values of the queues, and the exploration method is applied considering all possible

VERIFICATION 17

Sender Description

(PS0 pro: S at 1
read: INPUT
post: #SMessage=.INPUT, S at 2]
(# means new value of, means old value of)

[PSO pro: S at 2
time: SendDelay
post: if UNDEFINED or .Slost 'a IAXLOSS then S at 3T else S at 3F]

(allows message to be lost up to MAXLOSS times)

[PSD pro: S at 3T (successful transmission}
post: #Sdatau.SMessage. #Sseqz.SendSeqNo. #SReadyflag=TRUE.

#Slost-O, S at 4)

(PS0 pro: S at 3F (bad transmission)
post: #Slost=.Slost+1, S at 4]

[WAIT pro: S at 4 (wait for flag or timeout)
exp: .RReadyflag
time: Timeout
thenpost: S at 5 (if flag)
elsepost: S at 2] (if timeout)

[PSO pro: S at 5
post: #RReadyflag=FALSE,

(if .Rseq=.SendSeqNo then #SendSeqNo=-n.SendSeqNo, S at I
else S at 2)]

Receiver Description

[WAIT pro: R at 1
exp: .SReadyflag
thenpost: #SReadyfl ag=FALSE, #ReceivedSeqNoz.Sseq,

(if .ExpectedSeqNo=.Sseq then R at 2 else R at 3)]

[PSD pre: R at 2
post: #OUTPUTz.Sdata, #ExpectedSeqNom-.ExpectedSeqNo, R at 3]

[PS0 pro: R at 3
time: Ackolay
post: if UNDEFINED or .Rlost > MAXIOSS then R at 4T else R at 4F]

(allows Ack to be lost up to MAXLOSS times)

[PS0 pro: R at 4T (successful Ack)
post: #Rseqn.ReceivedSeqNo, #RReadyflag=TRUE, #Rlost:O. R at 1]

[PS0 pre: R at 4F { bad Ack}
post: ffRlostz.Rlost+1, R at 1]

Figu re 3.8. Alternating bit protocol in state deltas

18 FORMAL MODELING OF COMMUNICATION PROTOCOLS

transitions of each FSA [West 78, Boch 78]. In this case, overflow of a specified maximum queue size

can also be checked.

A similar form of analysis may be applied to Petri nets if the marking of the Petri net (the vector

giving the number of tokens in each place) is viewed as the state. In this domain, the reachability
graph is called a computation flow graph (CFG). A property called proper termination is equivalent to
reaching a proper final state, and may be checked by a reduction process that is faster than

construction of the CFG [Post 74, RaEs 80]. Faster analysis can also be accomplished by modeling

properties of the net with linear algebra [AABe 78).

Most of the results to date with these methods have focused on the properties of a single level of

specification. In order to show that the protocol meets a separate service specification, it is
necessary to show the "equivalence" of two state systems. We shall say more about this problem

below.

As seen from the above discussion, a rich theory and variety of tools have been developed for this

type of analysis. It is also easily automated, and a number of useful results have been obtained, for
example with the CCITT X.21 protocol [WeZa 78, RaEs 801. Unfortunately, the limitations of FSA and
pure Petri net specifications mean that these tools can only be used on simple protocols, or on the
control aspects of more complex protocols.

Symbolic Execution

Symbolic execution is an attempt to carry over the basic method of state exploration to richer types
of specification. Although the term suggests a program type specification, it is equally applicable to
abstract machine specifications. The goal is still to construct a graph of reachable system states, but
now the state is represented "symbolically," and may correspond to a large class of particular
systems states (e.g., all states with a single message pending, no matter what its contents).

Again starting from the initial composite system state, the reachability graph is constructed, making
branches when a "more symbolic" state must be broken into two possible "more concrete" cases
(e.g., when an arriving message has a sequence number equal or not equal to some symbolic value).
This drastically reduces the size of the reachability graph, but complicates correspondingly the test
for whether newly generated states are identical to previous states, since it requires comparison of

possibly complex symbolic state expressions. As with state exploration, branches are also
constructed to represent the various possible interfeavings of the concurrently executing components

of the system.

A minimally symbolic execution of several protocols has been performed by Hajek [Haje 78]. Brand
and Joyner have experimented with more symbolic analysis of a simple protocol [BrJo 78] and HDLC
[BrJo 791. Bremer and Drobnik used a similar technique on the HDLC protocol [BrDr,79]. State deltas
can also be symbolically executed, with the goal of demonstrating that a lower level specification

VERIFICATION 19

properly implements a higher level specification, although this work has only begun to be applied to

protocols [Over 80]. All three of these examples used automated systems, while Sunshine performed

an early manual symbolic execution of a connection establishment procedure [SuDa 781, and

Bochmann more recently completed analysis of a hierarchy of protocols [Boch 79].

The more powerful of these techniques are far from automatic, and require input of intermediate

assertions, induction hypotheses, and other guidance from human users. Hence the increased power

over simple state exploration systems comes at a definite price.

Structural Induction

The basic proof method used with abstract data types is structural induction. As noted in Section
3, there are a specified set of primary operations that create or modify objects of a data type. If we

wish to prove that some property P holds for all objects of the type (i.e., P is an invariant), it suffices to
show (1) that P holds for all the directly created objects (the basis), and (2) that if P holds for an

object, then it still holds after every constructor which can modify objects of the type has been applied

(the induction step) [Gutt 78].

Using this kind of induction and the ordinary rules of logic along with the specifications of the

operations, it is possible to prove useful invariants for a type, for example, that the output messages
are always an initial subsequence of the input messages [Thom 81]. Usually these properties concern

safety, but they may also concern liveness, for example, that it is always true that either some

operation is enabled or the system is in a correct final state [Bert 80].

Ina Jo has structural induction built into its specification checker so that type specifications and

invariants are read in together, and for each operation a theorem is produced that must be verified. In

AFFIRM, specifications may be read in alone. Proposed invariants may be added at a later time, and

the user must explicitly employ induction if desired in carrying out the proof [Gerh 80]. Both systems
have an interactive prover that the user must guide through proofs. The proof process is typically an

iterative one where difficulties in the proof suggest changes to the specifications.

The problem of proving that a lower level specification correctly "implements" a higher level

specification is relatively well understood for abstract data types [Gutt 78]. Essentially, this involves
showing that the objects of the implementing type represent all the objects of the implemented type

somehow, and that each operation of the implemented type is performed by some sequence of

operations in the implementing type that has the same effects. To accomplish the latter, the effects of

the higher level operations are basically "mapped down" into corresponding assertions about effects

of implementing level operations which are then proved from the implementing level specifications.
This often relies on some key system invariant that is proved by induction.

A special problem in showing this correspondence between protocol and service specifications is

that one service level operation may be implemented by a nondeterministic sequence of protocol level

20 FORMAL MODELING OF COMMUNICATION PROTOCOLS

operations. For example, the user level Send message operation will be accomplished by some
unknown combination of (Re)transmit, Receive, and Acknowledge operations at the protocol level if
messages can be lost in transit. Solutions to this problem are now being explored with AFFIRM
[Thorn 811

Program Verification

Early work in this area applied Hoare's assertion type methods to protocols specified procedurally
as programs [Boch 75, Sten 761. In this approach, assertions must be attached at suitable points in
the programs. Higher level assertions must also be formulated, serving as a partial service
specification. This often requires the introduction of "ghost variables" (which are not implemented)
to capture the desired notion of correct behavior. For example, arrays of data sent and delivered may
be needed to specify the desired behavior of a data transfer protocol, much as with buffer histories.

The low-level assertions must then be verified from the programs, and are in turn used to verify the
higher level assertions. A good deal of ingenuity is required both in formulating appropriate
assertions and in carrying out the proofs. The process is typically an iterative one where difficulties in
the proof suggest changes to the assertions. Needless to say, the fact that protocol systems have
several components running concurrently complicates the problem.

More recent specifications have become more abstract and less procedural. We have already
mentioned the blockage assertions and buffer histories that are used to characterize programs in
Gypsy. The introduction of temporal logic into assertions also allows greater generality by
broadening the future time at which a condition will hold (e.g., "eventually"). However, the basic
proof method of characterizing the behavior of a program by a set of assertions, and then proving that
the combined operation of several such components satisfies some higher level assertions, remains
unchanged. There has been less progress in automating this method than with the others described
here, although some promising manual proofs have been performed [HaOw 801.

Design Rules

The techniques falling into this category do not attempt to analyze already completed
specifications at all, but rather to prescribe rules for the construction of specifications that will
guarantee their correctness. One method is aimed at adding all necessary receive transitions
whenever a send transition is specified [Zafi 80, BrZa 80]. For example, if a send event is added from
a state where a receive is specified, then the receive must also be specified in the state reached after
the send.

Another method takes a specification of the desired service and of all but one submodule intended
to implement the service, and constructs the missing module needed (if one exists) [BoMe 80]. The
first method uses finite statp specifications while the second uses essentially equivalent grammar
models, so that the complexity of protocols that can be synthesized has been limited.

21

5. CONCLUSIONS

* A variety of techniques have been applied to the specification and analysis of computer
communication protocols. For the most part these techniques were developed earlier for more
general problem, and the existing theory and analysis procedures have been carried over to the

protocol area.

Simple methods such as finite state automata and Petri nets have yielded surprisingly useful results
[WeZa 78, Schu 80, RaEs 80]. Such specifications are fairly easy to understand, and automated
analysis is relatively straightforward. Hence this technology appears to be ready for more widespread
use.

Although such simple techniques have a well-developed theory, they have proved inadequate for

fully describing complex real-world protocols. Numerous extensions have been developed to improve

their expressive power, and several major applications of these more powerful methods have been
successfully demonstrated (see [BoSu 80] for a list and brief discussion). Here we only mention
[BoCh 77, Boch 80, SFAI 80, HaOw 80] as illustrating some of the more advanced specification
methods.

Abstract machines seem to be the most popular extended model, sharing with simpler models their
relative ease of understanding. Analysis is more difficult, but some promising results are discussed in
[Thomn 81]. Several significant applications indicate that this technique also appears ready for more
widespread use [Dick 80, ACFa 79, Thorn 81]

However, the need to invent and manipulate an explicit state may be seen as a disadvantage of
abstract machine models, leading to consideration of sequencing expression or buffer history models
which avoid explicit state notions. Temporal logic methods aim to alleviate other difficulties with
liveness properties and the passive nature of abstract machines. These methods have promising
advantages in particular areas, but generally are in more exploratory stages of development.

Unfortunately, many of these promising extensions to simple specification techniques invalidate or
complicate the original analysis methods. Our analysis abilities have not yet caught up with our
specification abilities. Although there has also been notable progress in this area, much work
remains to be done before complete protocol verification becomes a routine part of the design
process.

23

REFERENCES

[AABe 78] Azema, P., J. M. Ayache, and B. Berthomieu, "Design and verification of communication
procedures: A bottom-up approach," Proceedings of the Third International Conference on
Software Engineering, 1978.

[ACFa 79] Alfonzetti, S., S. Casale, and A. Faro, "A formal description of the DTE packet level in the
X.25 recommendation," Alta Frequenza 48, 8, August 1979, pp. 339 E-513 - 340 E-514.

[BaRa 80] Bartlett, K., and D. Rayner, "The certification of data communication protocols,"
Proceedings of the Trends and Applications Symposium, National Bureau of Standards
(USA), May 1980.

[Bert 80] Berthomieu, B., Proving liveness properties of communication protocols in AFFIRM,
USC/Information Sciences Institute, AFFIRM Memo 35, September 1980.

[Boch 75] Bochmann, G. V., "Logical verification and implementation of protocols," Proceedings of
the 4th Data Communications Symposium, Quebec, 1975, pp. 8-15 to 8-20.

[BoCh 77] Bochmann, G. V., and R. J. Chung, "A formalized specification of HDLC classes of
procedures," Proceedings of the National Telecommunications Conference, Los Angeles,
December 1977, paper 3A.2.

[Boch 78] Bochmann, G. V., "Finite state description of communication protocols," Computer
Networks 2, 4/5, October 1978, pp. 361-372.

[Boch 79] Bochmann, G. V., Formalized Specification of the MLP, Specification of the Services
Provided by the MLP, and An Analysis of the MLP, University of Montreal, Department
d'l.R.O., 1979.

(Boch 80] Bochmann, G. V., "A general transition model for protocols and communication services,"
IEEE Transactions on Communications COM-28, 4, April 1980, pp. 643-650.

[BoMe 80] Bochmann, G. V., and P. Merlin, "On the construction of communication protocols,"
Proceedings of the International Conference on Computer Communication, Atlanta,
October 1980, pp. 371-378.

[BoSu 80] Bochmann, G. V., and C. A. Sunshine, "Formal methods in communication protocol
design," IEEE Transactions on Communications COM-28, 4, April 1980, pp. 624-631.

(BrDr 79] Bremer, J., and 0. Drobnik, A New Approach to Protocol Design and Validation, IBM
Research Report RC 8018, December 1979.

[BrJo 78] Brand, D., and W. H. Joyner, Jr., "Verification of protocols using symbolic execution,"
Computer Networks 2, 4/5, October 1978, pp. 351-360.

(BrJo 791 Brand, D., and W. H. Joyner, Jr., Verification of HDLC, IBM Research Report RC 7779, July
1979.

F=iXDQ4 PAaE BAN-AM.~ njamti

t

24 FORMAL MODELING OF COMMUNICATION PROTOCOLS

[BrZa 801 Brand, D., and P. Zafiropulo, "Synthesis of protocols for an unlimited number of
* processes," Proceedings of the Trends and Applications Symposium, National Bureau of

Standards (USA), May 1980.

[Croc 77] Crocker, S., State Deltas: A Formalism for Representing Segments of Computation, Ph.D.
thesis, University of California, Los Angeles, 1977.

[DaBr 78] Danthine, A., and J. Bremer, "Modelling and verification of end-to-end transport protocols,"
Computer Networks 2, 4/5, October 1978, pp. 381.395.

[Dick 80] Dickson, G. J., "Formal specification technique for data communication protocol X.25 using
processing state transition diagrams," Australian Telecommunication Research 14, 2, 1980.

[FIMi 791 Flon, L., and J. Misra, "A unified approach to the specification and verification of abstract
data types," Proceedings of the Conference on Specification of Reliable Software, 1979, pp.
162.169.

[Gerh 80] Gerhart, S. L., et al., "An overview of AFFIRM: A specification and verification system,"
Proceedings of the IFIP Congress, October 1980, pp. 343-348.

[GoCo 78] Good, D., and R. M. Cohen, "Verifiable communications processing in Gypsy,"
Proceedings of the 17th IEEE Computer Society International Conference (COMPCON),
September 1978, pp. 28-35.

[GoMa 76] Gouda, M. G., and E. G. Manning, "On the modelling, analysis, and design of protocols--A
special class of software structures," Proceedings of the 2nd International Conference on
Software Engineering, October 1976, pp. 256.262.

[GoTa 79] Goguen, J. A., and J. J. Tardo, "An introduction to OBJ," Proceedings of the Conference
on Specification of Reliable Software, 1979, pp. 170-189.

[Gutt 78] Guttag, J. V., E. Horowitz, and D. R. Musser, "Abstract data types and software validation,"
Communications of the ACM 21, 12, December 1978, pp. 1048-1064.

[Gutt 79] Guttag, J., "Notes on type abstraction," Proceedings of the Conference on Specification of
Reliable Software, 1979, pp. 36.46.

[Haje 78] Hajek, J., "Automatically verifipd data transfer protocols," Proceedings of the 4th
International Computer Communioation Conference, Kyoto, September 1678, pp. 749-756.

[HaOw 80] Hailpern, B., and S. Owicki, "Verifying network protocols using temporal logic,"
Proceedings of the Trends and Applications Symposium, National Bureau of Standards
(USA), May 1980.

[Hara 77] Harangozo, J., "An approach to describing a link level protocol with a formal language,"
Proceedings of the 5th Data Communication Symposium, Snowbird, Utah, 1977, pp. 4-37 to

4-49.
[Kell 76] Keller, R. M., "Formal verification of parallel programs," Communications'of the ACM 19, 7,

July 1976, pp. 371-384.

25

(Krog 78] Krogdahl, S., "Verification of a class of link-level protocols," BIT 18, 1978, pp. 436.448.

[LeMo 73] LeMoli, G., "A theory of colloquies," Alta Frequenza 42, 10, 1973, pp. 493-223E to 500-
230E; and Proceedings of the First European Workshop on Computer Networks, Aries, April
1973, pp. 153-173.

[Loca 80] Locasso, R., et al., The Ina Jo Specification Language Reference Manual, System
Development Corp. TM-(L).6021 /001/00, June 1980.

[LuKa 79] Luckham, D. C., and R. A. Karp, An Axiomatic Semantics of Concurrent Cyclic Processes,
Stanford University Artificial Intelligence Laboratory, 1979.

[Merl 791 Merlin, P. M., "Specification and validation of protocols," IEEE Transactions on

Communications. COM.27, 11, November 1979, pp. 1671-1680.

[MeFa 76] Merlin, P. M., and D. J. Farber, "Recoverability of communication protocols--Implications of
a theoretical study," IEEE Transactions on Communications, September 1976, pp. 1036.
1043.

[Over 80] Overman, W., Verification of concurrent systems: function and timing, USC/Information
Sciences Institute (in preparation).

[Parn 72] Parnas, D. L., "A technique for software module specification with examples,"
Communications of the ACM 15, 5, May 1972, pp. 330.336.

(Piat 801 Piatkowski, T., "Remarks on ADCCP validation and testing techniques," Proceedings of the
Trends and Applications Symposium, National Bureau of Standards (USA), May 1980.

(Post 74] Postel, J. B., A Graph Model Analysis of Computer Communications Protocols, Ph.D. thesis,
University of California, Los Angeles, 1974.

[RaEs 80] Razouk, R., and G. Estrin, "Validation of the X.21 interface specification using Sara,"

Proceedings of the Trends and Applications Symposium, National Bureau of Standards
(USA), May 1980.

[RLSi 79] Robinson, L., K. N. Levitt, and B. A. Silverberg, The HDM handbook, 3 volumes, SRI
International, June 1979.

(Schi 80] Schindler, S., "Algebraic and model specification techniques," Proceedings of the 13th
Hawaii International Conference on System Sciences, January 1980.

(Schu 80] Schultz, G. D., et al., "Executable description and validation of SNA," IEEE Transactions on
Communications COM-28, 4, April 1980, pp. 661-677.

[ScMe 81] Schwartz, R. L., and P.M. Melliar-Smith, "Temporal logic specification of distributed
systems," Proceedings of the Second International Conference on Distributed Computing
Systems, IEEE, 1981

26 FORMAL MODELING OF COMMUNICATION PROTOCOLS

(SDCo 801 System Development Corp., "Protocol specification technique," in Formal Description
Techniques for Network Protocols, Report No. ICST/HLNP 80-3, National Bureau of
Standards (USA), June 1980.

[SFAI 80] Schindler, S., U. Flasche, and D. Altenkruger, "The OSA project: Formal specification of the
ISO transport service," Proceedings of the Computer Networking Symposium, National
Bureau of Standards (USA), December 1980.

[Sten 761 Stenning, N. V., "A data transfer protocol," Computer Networks 1, 2, September 1976, pp.
99.110.

[SuDa 78) Sunshine, C. A., and Y. K. Dalai, "Connection management in transport protocols,"
Computer Networks 2, 6, December 1978, pp. 454.473.

[Suns 79] Sunshine, C. A., Formal Methods for Communication Protocol Specification and
Verification, N-1429, The Rand Corporation, November 1979.

[Symo 80] Symons, F. J. W., Representation, Analysis, and Verification of Communication Protocols,
Telecom Australia Research Labs Report No. 7380, 1980.

[TeLi 781 Teng, A. Y., and M. T. Liu, "A formal model for automatic implementation and logical
validation of network communication protocols," Proceedings of the Computer Networking
Symposium, National Bureau of Standards (USA), December 1978, pp. 114.123.

[Tenn 80] Tenney, R., "Specification technique," in Formal Description Techniques for Network
Protocols, Report No. ICST/HLNP 80-3, National Bureau of Standards (USA), June 1980.

[Thorn 811 Thompson, D., et al., Specification and Verification of Communication Protocols in AFFIRM
Using State Transition Models, USC/Information Sciences Institute, Research Report 81-88,
March 1981.

[VyVi 80] Vytopil, J., and C. Vissers, Interaction Primitives in Formal Specification of Distributed
Systems, Twente University, The Netherlands, June 1980.

[West 78) West, C. H., "General technique for communication protocol validation," IBM Journal of
Research and Development, 22,4, July 1978.

[WeZa 781 West, C. H., and P. Zafiropulo, "Automated validation of a communications protocol: the
CCITT X.21 recommendations," IBM Journal of Research and Development, 22, 1, January
1978, pp. 60-71.

(Zafi 801 Zafiropulo, P., et al., "Towards analyzing and synthesizing protocols," IEEE Transactions on
Communications COM-28, 4, April 1980, pp. 651.661.

..

